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RETROSPECTIVE

Abstract
The muscle spindle model presented in Maltenfort and Burke (2003) calculates muscle spindle
primary afferent feedback depending on the muscle fibre stretch and fusimotor drive. The aim of
this paper is to provide an updated version of the model, which is now capable of replicating the
originally published data. This is achieved by modifying the equations describing the modulation
of the muscle spindle output in response to dynamic fusimotor drive.
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1 Introduction
Muscle spindles can be found in almost all skeletal muscles and make the most important con-
tribution to proprioception (Macefield and Knellwolf, 2018). The muscle spindle is a special
mechano-receptor sensing the intrafusal muscle fiber length change and providing stretch feed-
back to the neuromuscular system via two types of axons: primary (Ia) and secondary (II) fibers.
The afferent axons form feedback loops exciting α-motoneurons and thus, ultimately control
skeletal muscle contraction (Kandel et al., 2000). For optimizing motor control in various condi-
tions, the sensitivity of muscle spindles is modulated by specialized neurons, i. e. skeletofusimotor
(β )- as well as static and dynamic fusimotor (γ)-neurons (Banks, 1994; Matthews, 1962).
The muscle spindle model by Maltenfort and Burke (2003) predicts primary afferent feedback
depending on the muscle stretch and fusimotor drive. The model was validated using data
recorded from cat muscle spindles during ramp-and-hold and sinusoidal stretches (Crowe and
Matthews, 1964; Hulliger et al., 1977a,b). The strength of the model is its capability to predict
muscle spindle primary activity over a large range of physiological conditions while demanding
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little computational resources.
However, in the presence of dynamic fusimotor drive, the published model predicts spindle
frequencies that are considerably higher than shown in the original publication. Grandjean and
Maier (2014) previously adapted the Maltenfort and Burke (2003) model to improve the predicted
physiological behaviour in the presence of fusimotor drive. However, they did not publish their
code and the shown results could not be reproduced with the provided equations. Thus, the aim
of this manuscript is to provide an updated and validated version of the muscle spindle model
originally published in Maltenfort and Burke (2003). In detail, this work presents a model capable
of replicating the muscle spindle firing rates during ramp-and-hold and sinusoidal stretches while
considering variable fusimotor drives as shown in Fig. 4 and Fig. 5 of the original publication.
Since the published equations are based on a specific discretization scheme and hence, the time
step size is a variable, the model is implemented in MATLAB. Nevertheless, to promote the use
of open standards for model sharing, we additionally provide a CellML implementation of the
updated model.
Note that we will refer to the model based on the equations published in Maltenfort and Burke
(2003) as original model and to our model as the updated model.

2 Model description
TheMaltenfort and Burkemuscle spindlemodel was developed for two purposes: the investigation
of β -feedback loops (Burke and Tsairis, 1977) and for serving as computationally efficient model
in large-scale simulations of the neuromuscular system. The latter is ensured by employing only
algebraic equations. The model has a block-wise structure (cf. Fig. 1B in the original manuscript),
calculating a baseline muscle spindle frequency for passive length changes as well as additional
contributions modulated by static and dynamic fusimotor drives. Following the findings from
Andersson et al. (1968), Lennerstrand and Thoden (1968a,b) and Lennerstrand (1968) and using
a phenomenological approach, each contribution is calculated as the sum of four components:
a pure velocity and a pure position sensitivity, a mixed velocity and position sensitivity and a
baseline firing rate at the initial length. Thereby, the velocity is the filtered derivative of the the
position input to achieve smooth transitions from shortening to lengthening (cf. Maltenfort and
Burke (2003), Eqn. 3). The static and dynamic contributions are non-linearly mixed by an occlusion
function, partially suppressing the smaller contribution as it was observed in experimental studies
(Schäfer, 1974). Finally, the passive contribution and the mixed fusimotor contribution are added
up yielding the firing rate of the muscle spindle primary axon.
Since the role of β -innervation is still under debate, the β -feedback loop is not part of the provided
model.

3 Model modifications
Comparisons with the original code, which was kindly provided by the author, revealed deviations
with respect to the published equations. This exclusively concerns the descriptions of the velocity-
dependent terms modulated by dynamic fusimotor drive Qd and Sv,d from Table 1 in the original
manuscript. For better comprehensibility of the quantities and their context, we will display
further equations. The parameter values are all adopted from the original publication.
Note that the modifications introduced in Section 3.1 apply to both provided implementations,
i. e. MATLAB and CellML, while the modifications introduced in Section 3.2 only apply to the
CellML implementation.

3.1 General model modifications
Eqn. 2A of the original paper models the muscle spindle Ia firing rate R as the sum of a passive
contribution Rpassive and the mixed contribution from static (∆Rstatic) and dynamic (∆Rdynamic)
fusimotor drive:

R = Rpassive + focclusion
(
∆Rdynamic,∆Rstatic

)
(1)

Thereby, focclusion is a function describing the non-linear summation of the contributions from
static and dynamic fusimotor input.
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In detail, the contribution modulated by dynamic fusimotor drive ∆Rdynamic is described by a
function depending on dynamic gamma drive γd, displacement x and velocity v (cf. Eqn. 2C,
original publication):

∆Rdynamic =
[
Sv,d (γd,v ) + Sss,d (γd)

]
∗ x + Qd (γd,v ) + Bd (γd) (2)

The individual terms in Eqn. 2 are specified in Table 1 as well as Eqn. 5B and 6B of the original
publication. The modifications made for this publication concern the calculation of Sv,d (γd,v ) and
Qd (γd,v ), i.e.

Qd (γd,v ) = a tan−1 (v/b), (3)
Sv,d (γd,v ) = c tan−1 (v/d ), (4)

a =

{
101

(
1 − exp

[
− (γd/168)1.94

] )
if v > 0

0 if v ≤ 0,
(5)

b = (γd/116 + 0.05)2 , (6)

c =

{
64.4

(
1 − exp

[
− (γd/225)1.56

] )
if v > 0

0 if v ≤ 0,
(7)

d =
8.6

1 + γd/39
. (8)

Note that only the descriptions of a , c and d are modified with respect to the original publication.

3.2 Implementation in CellML
Implementing the model in CellML requires further modifications concerning the velocity filter,
which smoothes transitions between ramp stretch and shortening. In detail, the velocity v is
obtained from the temporally filtered position input x lag (cf. Eqn. 3C, original paper):

v (t ) =
dx lag (t )

dt =
x (t ) − x lag (t )

τ
. (9)

Thereby, τ is a time constant, specific for each type of fusimotor drive. In the original publication,
x lag is calculated by a digital filter function (cf. Eqn. 3B, original paper) using the chosen time
step size as a variable. This can not be implemented in CellML in a straight forward way. Thus,
the CellML code numerically integrates the differential equation (Eqn. 9) to provide the actual
velocity v (t ). Note that in the MATLAB code, the same formulation as in the original paper is
used. In both codes, the initial condition x lag (t = 0) = 0 is used.

4 Computational simulation
4.1 MATLAB
The simulations were run with MATLAB (The MathWorks, Inc., Natick, Massachusetts, United
States) Version R2018a (9.4.0.813654) using a time step size of 1ms. Scripts are provided to run
the simulations and plot the results shown in Fig. 1, Fig. 2 and Fig. 3:

Fig01.m

Fig02.m

Fig03.m

These scripts call the function muscle_spindle_maltenfort_and_burke_2003.m, which contains
the muscle spindle model equations. Note that the figure scripts contain a boolean variable
plot_paper_data, which determines whether the digitized data from the original publication (cf.
Section 5) is plotted for comparison. If the variable is set true, the files

Maltenfort_and_Burke_2003_Fig4A_digitized.csv
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Figure 1. Model responses (solid lines) to ramp-and-hold stretches and results from Maltenfort
and Burke (2003), their Fig. 4A and B (circles). The displacement is qualitatively shown in gray
(6mm ramp-and-hold stretch). A: ramp velocity 5mms−1. B: ramp velocity 30mms−1. Ia firing
rate and static (γs) and dynamic (γd) fusimotor drive are given in pulses per second (pps). This

figure is created by running Fig01.m.

Maltenfort_and_Burke_2003_Fig4B_digitized.csv

Maltenfort_and_Burke_2003_Fig5A_digitized.csv

Maltenfort_and_Burke_2003_Fig5B_digitized.csv

Maltenfort_and_Burke_2003_Fig5C_digitized.csv

Maltenfort_and_Burke_2003_Fig5D_digitized.csv

must be downloaded to the same folder as the respective figure script, such that the data can
be loaded for plotting. Further, to add the results from CellML simulations to Fig. 3, the CellML
simulations results need to be stored to a file called Fig03.csv and the respective boolean variable
in the MATLAB script Fig03.m (plot_cellml_data) must be set true.

4.2 CellML
The CellML simulations were run with OpenCOR version 0.6 (Garny and Hunter, 2015), Euler
forward solver and a time step size of 0.1ms. The CellML simulation results are obtained by
running Fig03.sedml. Thereby, the stretch scenarios shown in Figure 3A and B are applied
consecutively. Note that in Figure 3B the second of two sinusoidal stretch cycles is plotted to
exclude effects caused by the initial displacement. The comparisons to the respective MATLAB
results, as also shown in Figure 3, are created by storing the CellML simulation results to a file
called Fig03.csv and running Fig03.m (cf. Section 4.1).

5 Reproducability goals
The aim of this paper is to provide a model which is able to reproduce the results as shown in
Fig. 4A and Fig.4B as well as Fig. 5A-D of the original publication. Since the data from the original
publication were not available, Engauge Digitizer (Version 10.4) was used to obtain the data points
shown herein.
In Fig. 1 spindle responses to ramp-and-hold stretches of two different ramp velocities are shown.
The prediction of the simulations coincide very well with the digitized data from the original
publication. The same applies for simulation results in response to sinusoidal stretches as shown
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Figure 2. Model responses (solid lines) to sinusoidal stretch and results from Maltenfort and
Burke (2003), their Fig. 5 (circles). The displacement is qualitatively shown in gray (1.4mm
peak-to-peak sinusoidal stretch, mean displacement 4mm, frequency 1 Hz, second of two
cycles). A: only static fusimotor drive (γs). B: only dynamic fusimotor drive (γd). C: static

fusimotor drive against a tonic background of dynamic fusimotor drive. D: dynamic fusimotor
drive against a tonic background of static fusimotor drive. Ia firing rate and fusimotor drive are

given in pulses per second (pps). This figure is created by running Fig02.m.
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Figure 3. Comparison of simulation results obtained with MATLAB and CellML
implementations. A: 6mm ramp-and-hold stretch, ramp velocity 30mms−1, no fusimotor drive.
B: Sinusoidal stretch (1.4mm peak-to-peak, mean displacement 4mm, frequency 1 Hz, second
of two cycles), static gamma drive 50 pps, dynamic gamma drive 125 pps. Ia firing rate and
fusimotor drive are given in pulses per second (pps). This figure is created by running both,

Fig03.sedml and Fig03.m.

in Fig. 2. Here, the second of two stretch cycles is plotted to exclude effects from the initial
displacement at the beginning of the first stretch cycle. Note that small deviations from the
digitized data have their origin in unavoidable inaccuracies due to figure resolution and choice of
line styles.
The CellML code was run exemplary for two scenarios to show the consistency with the MATLAB
model. As it can be seen in Fig. 3A, the CellML prediction is slightly higher during the ramp phase
of the ramp-and-hold scenario. This is due to the necessary modification to the implementation
of the velocity filter (cf. Section 3) and the difference is dependent on the chosen solver and time
step size. However, the deviations are small and even less pronounced for the sinusoidal stretch
with applied fusimotor drive (cf. Fig. 3B).

6 Discussion
With this publication, a corrected version of the Maltenfort and Burke (2003) muscle spindle
model is made available to facilitate the integration of muscle spindle models in future models of
the neuromuscular system. The overestimation of the spindle firing rate in response to dynamic
fusimotor drive, as also addressed by Grandjean and Maier (2014), is corrected in the provided
model. It was shown that the provided codes reproduce the results published in the original
paper. As shown in Maltenfort and Burke (2003), these results match a variety of experimentally
observed characteristics of muscle spindle firing. For an elaborate discussion of the model, the
reader is referred to the original publication (Maltenfort and Burke, 2003).
In absence of secondary afferent firing, the model is well suited for large-scale bio-physically
motivated simulations due to its low computational cost (cf. e. g. Röhrle et al., 2019). For example,
combining the spindle model with a continuum-mechanical multi-muscle model (e. g. Röhrle
et al., 2017) has the potential to provide new means of investigating muscle spindle behaviour in
response to heterogeneous muscle deformations as well as sensory interactions across joints.
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Reproducibility report for: Spindle Model Responsive to Mixed Fusimotor Inputs: an updated version of the
Maltenfort and Burke (2003) model.
Submitted to: Physiome
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Curation outcome summary: Successfully reproduced all the figures presented in this manuscript.

Box 1: Criteria for repeatability and reproducibility

Model source code provided:

Source code: a standard procedural language is used (e.g. MATLAB, Python, C)

There are details/documentation on how the source code was compiled
There are details on how to run the code in the provided documentation
The initial conditions are provided for each of the simulations
Details for creating reported graphical results from the simulation results

Source code: a declarative language is used (e.g. SBML, CellML, NeuroML)

The algorithms used are defined or cited in previous articles
The algorithm parameters are defined
Post-processing of the results are described in sufficient detail

Executable model provided:

The model is executable without source (e.g. desktop application, compiled code, online service)

There are sufficient details to repeat the required simulation experiments

The model is described mathematically in the article(s):

Equations representing the biological system

There are tables or lists of parameter values

There are tables or lists of initial conditions

Machine-readable tables of parameter values

Machine-readable tables of initial conditions

The simulation experiments using the model are described mathematically in the article:

Integration algorithms used are defined

Stochastic algorithms used are defined

Random number generator algorithms used are defined

Parameter fitting algorithms are defined

The paper indicates how the algorithms yield the desired output
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Box 2: Criteria for accessibility

Model/source code is available at a public repository or researcher’s web site

Prohibitive license provided

Permissive license provided

Open-source license provided

All initial conditions and parameters are provided

All simulation experiments are fully defined (events listed, collection times and measurements
specified, algorithms provided, simulator specified, etc.)

Box 3: Rules for Credible practice of Modeling and Simulationa

aModel credibility is assessed using the Interagency Modeling and Ananlysis Group conformance rubric:
https://www.imagwiki.nibib.nih.gov/content/10-simple-rules-conformance-rubric

Define context clearly: Extensive

Use appropriate data: Extensive

Evaluate within context: Extensive

List limitations explicitly: Insufficient

Use version control: Adequate

Document adequately: Extensive

Conform to standards: Extensive

Box 4: Evaluation

Model and its simulations could be repeated using provided declarative or procedural code

Model and its simulations could be reproduced
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Summary comments: Model and source code are available in the associated OMEX archive. This was used in
our attempt to reproduce the results presented in the paper. We successfully ran the Matlab, CellML and SED-ML
files provided to reproduce Figure 1 - Figure 3 as presented in this manuscript.
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